Package: PKNCA 0.11.0.9000

PKNCA: Perform Pharmacokinetic Non-Compartmental Analysis

Compute standard Non-Compartmental Analysis (NCA) parameters for typical pharmacokinetic analyses and summarize them.

Authors:Bill Denney [aut, cre], Clare Buckeridge [aut], Sridhar Duvvuri [ctb]

PKNCA_0.11.0.9000.tar.gz
PKNCA_0.11.0.9000.zip(r-4.5)PKNCA_0.11.0.9000.zip(r-4.4)PKNCA_0.11.0.9000.zip(r-4.3)
PKNCA_0.11.0.9000.tgz(r-4.4-any)PKNCA_0.11.0.9000.tgz(r-4.3-any)
PKNCA_0.11.0.9000.tar.gz(r-4.5-noble)PKNCA_0.11.0.9000.tar.gz(r-4.4-noble)
PKNCA_0.11.0.9000.tgz(r-4.4-emscripten)PKNCA_0.11.0.9000.tgz(r-4.3-emscripten)
PKNCA.pdf |PKNCA.html
PKNCA/json (API)
NEWS

# Install 'PKNCA' in R:
install.packages('PKNCA', repos = c('https://billdenney.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/billdenney/pknca/issues

On CRAN:

ncanoncompartmental-analysispharmacokinetics

12.33 score 69 stars 4 packages 211 scripts 1.5k downloads 12 mentions 136 exports 26 dependencies

Last updated 10 days agofrom:676dcc5065. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 05 2024
R-4.5-winOKNov 05 2024
R-4.5-linuxOKNov 05 2024
R-4.4-winOKNov 05 2024
R-4.4-macOKNov 05 2024
R-4.3-winOKNov 05 2024
R-4.3-macOKNov 05 2024

Exports:add.interval.coladdProvenanceadj.r.squaredas_PKNCAconcas_PKNCAdataas_PKNCAdoseas_PKNCAresultsas_sparse_pkbusiness.cvbusiness.geocvbusiness.geomeanbusiness.maxbusiness.meanbusiness.medianbusiness.minbusiness.rangebusiness.sdcheck.conc.timecheck.conversioncheck.interval.specificationcheckProvenancechoose.auc.intervalsclean.conc.blqclean.conc.nacov_holderexcludeexclude_nca_max.aucinf.pextexclude_nca_min.hl.r.squaredexclude_nca_span.ratioextrapolate.concfilterfind.taufull_joingeocvgeomeangeosdget.best.modelget.interval.colsget.parameter.depsgetDepVargetGroupsgetIndepVargroup_byinner_joininterp.extrap.concinterp.extrap.conc.doseinterpolate.concis_sparse_pkleft_joinmutatepk.businesspk.calc.aepk.calc.aucpk.calc.auc.allpk.calc.auc.infpk.calc.auc.inf.obspk.calc.auc.inf.predpk.calc.auc.lastpk.calc.aucabovepk.calc.aucintpk.calc.aucint.allpk.calc.aucint.inf.obspk.calc.aucint.inf.predpk.calc.aucint.lastpk.calc.aucivpk.calc.auciv_pbextpk.calc.aucpextpk.calc.aumcpk.calc.aumc.allpk.calc.aumc.infpk.calc.aumc.inf.obspk.calc.aumc.inf.predpk.calc.aumc.lastpk.calc.auxcpk.calc.c0pk.calc.cavpk.calc.ceoipk.calc.clpk.calc.clast.obspk.calc.clrpk.calc.cmaxpk.calc.cminpk.calc.count_concpk.calc.cstartpk.calc.ctroughpk.calc.deg.flucpk.calc.dnpk.calc.fpk.calc.fepk.calc.half.lifepk.calc.kelpk.calc.mrtpk.calc.mrt.ivpk.calc.mrt.mdpk.calc.ptrpk.calc.sparse_aucpk.calc.sparse_auclastpk.calc.swingpk.calc.tfirstpk.calc.thalf.effpk.calc.time_abovepk.calc.tlagpk.calc.tlastpk.calc.tmaxpk.calc.totdosepk.calc.vsspk.calc.vzpk.ncapk.nca.intervalpk.tsspk.tss.monoexponentialpk.tss.stepwise.linearPKNCA_impute_method_start_cminPKNCA_impute_method_start_conc0PKNCA_impute_method_start_predosepknca_units_tablePKNCA.choose.optionPKNCA.optionsPKNCA.options.describePKNCA.set.summaryPKNCAconcPKNCAdataPKNCAdosePKNCAresultsright_joinroundingSummarizeroundStringsetDurationsetRoutesignifStringsparse_auc_weight_linearsparse_meansuperpositiontime_calcungroupvar_sparse_auc

Dependencies:backportscheckmateclicpp11digestdplyrfansigenericsgluelatticelifecyclemagrittrnlmepillarpkgconfigpurrrR6rlangstringistringrtibbletidyrtidyselectutf8vctrswithr

AUC Calculation with PKNCA

Rendered fromv05-auc-calculation-with-PKNCA.Rmdusingknitr::rmarkdownon Nov 05 2024.

Last update: 2024-10-24
Started: 2022-10-04

AUC integration methods

Rendered fromv23-auc-integration-methods.Rmdusingknitr::rmarkdownon Nov 05 2024.

Last update: 2023-10-07
Started: 2023-09-30

Computing NCA Parameters for Theophylline

Rendered fromv02-example-theophylline.Rmdusingknitr::rmarkdownon Nov 05 2024.

Last update: 2024-02-05
Started: 2022-10-04

Data Imputation

Rendered fromv08-data-imputation.Rmdusingknitr::rmarkdownon Nov 05 2024.

Last update: 2024-01-15
Started: 2022-10-12

Half-Life Calculation

Rendered fromv06-half-life-calculation.Rmdusingknitr::rmarkdownon Nov 05 2024.

Last update: 2022-10-04
Started: 2022-10-04

Half-life calculation with Tobit regression

Rendered fromv06-half-life-calculation-tobit.Rmdusingknitr::rmarkdownon Nov 05 2024.

Last update: 2024-06-19
Started: 2024-03-12

Introduction to PKNCA and Usage Instructions

Rendered fromv01-introduction-and-usage.Rmdusingknitr::rmarkdownon Nov 05 2024.

Last update: 2024-10-24
Started: 2022-10-04

Methods Used for Dose-Aware Concentration Interpolation/Extrapolation

Rendered fromv21-methods-for-dose-aware-interpolation-and-extrapolation.Rmdusingknitr::rmarkdownon Nov 05 2024.

Last update: 2022-10-04
Started: 2022-10-04

Noncompartmental evaluation of time to steady-state

Rendered fromv22-time-to-steady-state.Rmdusingknitr::rmarkdownon Nov 05 2024.

Last update: 2022-10-12
Started: 2022-10-05

Options for Controlling PKNCA

Rendered fromv40-options-for-controlling-PKNCA.Rmdusingknitr::rmarkdownon Nov 05 2024.

Last update: 2022-10-04
Started: 2022-10-04

PKNCA Training Sessions

Rendered fromv30-training-session.Rmdusingknitr::rmarkdownon Nov 05 2024.

Last update: 2023-10-24
Started: 2022-10-04

PKNCA Validation

Rendered fromv60-PKNCA-validation.Rmdusingknitr::rmarkdownon Nov 05 2024.

Last update: 2022-10-04
Started: 2022-10-04

Post-Processing

Rendered fromv07-post-processing.Rmdusingknitr::rmarkdownon Nov 05 2024.

Last update: 2022-10-04
Started: 2022-10-04

Selection of Calculation Intervals

Rendered fromv03-selection-of-calculation-intervals.Rmdusingknitr::rmarkdownon Nov 05 2024.

Last update: 2024-06-28
Started: 2022-10-04

Sparse NCA Calculations

Rendered fromv04-sparse.Rmdusingknitr::rmarkdownon Nov 05 2024.

Last update: 2022-10-04
Started: 2022-10-04

Superposition of Pharmacokinetic Data

Rendered fromv20-superposition.Rmdusingknitr::rmarkdownon Nov 05 2024.

Last update: 2022-10-04
Started: 2022-10-04

Unit Assignment and Conversion with PKNCA

Rendered fromv07-unit-conversion.Rmdusingknitr::rmarkdownon Nov 05 2024.

Last update: 2022-10-16
Started: 2022-10-04

Writing PKNCA Parameter Functions

Rendered fromv80-writing-parameter-functions.Rmdusingknitr::rmarkdownon Nov 05 2024.

Last update: 2023-09-29
Started: 2022-10-04

Readme and manuals

Help Manual

Help pageTopics
Add columns for calculations within PKNCA intervalsadd.interval.col
Add a hash and associated information to enable checking object provenance.addProvenance
Calculate the adjusted r-squared valueadj.r.squared
Determine if there are any sparse or dense calculations requested within an intervalany_sparse_dense_in_interval
Convert an object into a PKNCAconc objectas_PKNCAconc as_PKNCAdata as_PKNCAdose as_PKNCAresults
Generate a sparse_pk objectas_sparse_pk
Extract the parameter results from a PKNCAresults and return them as a data.frame.as.data.frame.PKNCAresults
Assert that a value is a valid AUC methodassert_aucmethod
Verify that concentration measurements are validassert_conc assert_conc_time assert_time
Assert that a value is a dosing intervalassert_dosetau
Assert that an interval is accurately defined as an interval, and return the intervalassert_intervaltime_single
Assert that a lambda.z value is validassert_lambdaz
Confirm that a value is greater than another valueassert_number_between
Confirm that a value is greater than another valueassert_numeric_between
Assert that an object is a PKNCAdata objectassert_PKNCAdata
Support function for AUC integrationauc_integrate
Generate functions to do the named function (e.g. mean) applying the business rules.business.cv business.geocv business.geomean business.max business.mean business.median business.min business.range business.sd
Check that the conversion to a data type does not change the number of NA valuescheck.conversion
Take in a single row of an interval specification and return that row updated with any additional calculations that must be done to fulfill all dependencies.check.interval.deps
Check the formatting of a calculation interval specification data frame.check.interval.specification
Check the hash of an object to confirm its provenance.checkProvenance
Choose how to interpolate, extrapolate, or integrate data in each concentration intervalchoose_interval_method
Choose intervals to compute AUCs from time and dosing informationchoose.auc.intervals
Handle BLQ values in the concentration measurements as requested by the user.clean.conc.blq
Handle NA values in the concentration measurements as requested by the user.clean.conc.na
Calculate the covariance for two time points with sparse samplingcov_holder
The following functions are defunctcheck.conc.time defunct
Exclude data points or results from calculations or summarization.exclude exclude.default
Exclude NCA parameters based on examining the parameter set.exclude_nca exclude_nca_max.aucinf.pext exclude_nca_min.hl.r.squared exclude_nca_span.ratio
dplyr filtering for PKNCAfilter.PKNCAconc filter.PKNCAdose filter.PKNCAresults
Find the repeating interval within a vector of dosesfind.tau
Find the first occurrence of an operator in a formula and return the left, right, or both sides of the operator.findOperator
Perform the half-life fit given the data. The function simply fits the data without any validation. No selection of points or any other components are done.fit_half_life
Extract the formula from a PKNCAconc object.formula.PKNCAconc formula.PKNCAdose
Compute the geometric mean, sd, and CVgeocv geomean geosd
Get the impute function from either the intervals column or from the methodget_impute_method
Extract the best model from a list of models using the AIC.get.best.model
Get the first model from a list of modelsget.first.model
Get the columns that can be used in an interval specificationget.interval.cols
Get all columns that depend on a parameterget.parameter.deps
Retrieve the value of an attribute column.getAttributeColumn
Get the value from a column in a data frame if the value is a column there, otherwise, the value should be a scalar or the length of the data.getColumnValueOrNot
Get the name of the element containing the data for the current object.getDataName getDataName.default getDataName.PKNCAconc getDataName.PKNCAdose getDataName.PKNCAresults
Get the dependent variable (left hand side of the formula) from a PKNCA object.getDepVar
Get the groups (right hand side after the '|' from a PKNCA object).getGroups.PKNCAconc getGroups.PKNCAdata getGroups.PKNCAdose getGroups.PKNCAresults
Get the independent variable (right hand side of the formula) from a PKNCA object.getIndepVar
dplyr grouping for PKNCAgroup_by.PKNCAconc group_by.PKNCAdose group_by.PKNCAresults ungroup.PKNCAconc ungroup.PKNCAdose ungroup.PKNCAresults
Get grouping variables for a PKNCA objectgroup_vars.PKNCAconc group_vars.PKNCAdose
dplyr joins for PKNCAfull_join.PKNCAconc full_join.PKNCAdose full_join.PKNCAresults inner_join.PKNCAconc inner_join.PKNCAdose inner_join.PKNCAresults left_join.PKNCAconc left_join.PKNCAdose left_join.PKNCAresults right_join.PKNCAconc right_join.PKNCAdose right_join.PKNCAresults
Interpolate or extrapolate concentrations using the provided methodextrapolate_conc_lambdaz interpolate_conc_linear interpolate_conc_log interp_extrap_conc_method
Interpolate concentrations between measurements or extrapolate concentrations after the last measurement.extrapolate.conc interp.extrap.conc interp.extrap.conc.dose interpolate.conc
Is a PKNCA object used for sparse PK?is_sparse_pk is_sparse_pk.PKNCAconc is_sparse_pk.PKNCAdata is_sparse_pk.PKNCAresults
Extract the columns used in the formula (in order) from a PKNCAconc or PKNCAdose object.model.frame.PKNCAconc model.frame.PKNCAdose
dplyr mutate-based modification for PKNCAmutate.PKNCAconc mutate.PKNCAdose mutate.PKNCAresults
Normalize the exclude column by setting blanks to NAnormalize_exclude
Convert a formula representation to the columns for input dataparse_formula_to_cols
Convert the grouping info and list of results for each group into a results data.framepk_nca_result_to_df
Run any function with a maximum missing fraction of X and 0s possibly counting as missing. The maximum fraction missing comes from 'PKNCA.options("max.missing")'.pk.business
Calculate amount excreted (typically in urine or feces)pk.calc.ae
Calculate the AUC above a given concentrationpk.calc.aucabove
Calculate the AUC over an interval with interpolation and/or extrapolation of concentrations for the beginning and end of the interval.pk.calc.aucint pk.calc.aucint.all pk.calc.aucint.inf.obs pk.calc.aucint.inf.pred pk.calc.aucint.last
Calculate AUC for intravenous dosingpk.calc.auciv pk.calc.auciv_pbext
Calculate the AUC percent extrapolatedpk.calc.aucpext
A compute the Area Under the (Moment) Curvepk.calc.auc pk.calc.auc.all pk.calc.auc.inf pk.calc.auc.inf.obs pk.calc.auc.inf.pred pk.calc.auc.last pk.calc.aumc pk.calc.aumc.all pk.calc.aumc.inf pk.calc.aumc.inf.obs pk.calc.aumc.inf.pred pk.calc.aumc.last pk.calc.auxc
Estimate the concentration at dosing time for an IV bolus dose.pk.calc.c0 pk.calc.c0.method.c0 pk.calc.c0.method.c1 pk.calc.c0.method.cmin pk.calc.c0.method.logslope pk.calc.c0.method.set0
Calculate the average concentration during an interval.pk.calc.cav
Determine the concentration at the end of infusionpk.calc.ceoi
Calculate the (observed oral) clearancepk.calc.cl
Determine the last observed concentration above the limit of quantification (LOQ).pk.calc.clast.obs
Calculate renal clearancepk.calc.clr
Determine maximum observed PK concentrationpk.calc.cmax pk.calc.cmin
Count the number of concentration measurements in an intervalpk.calc.count_conc
Determine the concentration at the beginning of the intervalpk.calc.cstart
Determine the trough (end of interval) concentrationpk.calc.ctrough
Determine the degree of fluctuationpk.calc.deg.fluc
Determine dose normalized NCA parameterpk.calc.dn
Calculate the absolute (or relative) bioavailabilitypk.calc.f
Calculate fraction excreted (typically in urine or feces)pk.calc.fe
Compute the half-life and associated parameterspk.calc.half.life
Calculate the elimination rate (Kel)pk.calc.kel
Calculate the mean residence time (MRT) for single-dose data or linear multiple-dose data.pk.calc.mrt pk.calc.mrt.iv
Calculate the mean residence time (MRT) for multiple-dose data with nonlinear kinetics.pk.calc.mrt.md
Determine the peak-to-trough ratiopk.calc.ptr
Calculate AUC and related parameters using sparse NCA methodspk.calc.sparse_auc pk.calc.sparse_auclast
Determine the PK swingpk.calc.swing
Calculate the effective half-lifepk.calc.thalf.eff
Determine time at or above a set valuepk.calc.time_above
Determine the observed lag time (time before the first concentration above the limit of quantification or above the first concentration in the interval)pk.calc.tlag
Determine time of last observed concentration above the limit of quantification.pk.calc.tfirst pk.calc.tlast
Determine time of maximum observed PK concentrationpk.calc.tmax
Extract the dose used for calculationspk.calc.totdose
Calculate the steady-state volume of distribution (Vss)pk.calc.vss
Calculate the terminal volume of distribution (Vz)pk.calc.vz
Compute NCA parameters for each interval for each subject.pk.nca
Compute all PK parameters for a single concentration-time data setpk.nca.interval
Compute NCA for multiple intervalspk.nca.intervals
Compute the time to steady-state (tss)pk.tss
Clean up the time to steady-state parameters and return a data frame for use by the tss calculators.pk.tss.data.prep
Compute the time to steady state using nonlinear, mixed-effects modeling of trough concentrations.pk.tss.monoexponential
A helper function to estimate individual and single outputs for monoexponential time to steady-state.pk.tss.monoexponential.individual
A helper function to estimate population and popind outputs for monoexponential time to steady-state.pk.tss.monoexponential.population
Compute the time to steady state using stepwise test of linear trendpk.tss.stepwise.linear
Compute noncompartmental pharmacokineticsPKNCA-package PKNCA
Find NCA parameters with a given unit typepknca_find_units_param
Separate out a vector of PKNCA imputation methods into a list of functionsPKNCA_impute_fun_list
Methods for imputation of data with PKNCAPKNCA_impute_method PKNCA_impute_method_start_cmin PKNCA_impute_method_start_conc0 PKNCA_impute_method_start_predose
Perform unit conversion (if possible) on PKNCA resultspknca_unit_conversion
Add parentheses to a unit value, if neededpknca_units_add_paren
Create a unit assignment and conversion tablepknca_units_table
Choose either the value from an option list or the current set value for an option.PKNCA.choose.option
Set default options for PKNCA functionsPKNCA.options
Describe a PKNCA.options option by name.PKNCA.options.describe
Define how NCA parameters are summarized.PKNCA.set.summary
Create a PKNCAconc objectPKNCAconc PKNCAconc.data.frame PKNCAconc.default PKNCAconc.tbl_df
Create a PKNCAdata object.PKNCAdata PKNCAdata.default PKNCAdata.PKNCAconc PKNCAdata.PKNCAdose
Create a PKNCAdose objectPKNCAdose PKNCAdose.data.frame PKNCAdose.default PKNCAdose.tbl_df
Generate a PKNCAresults objectPKNCAresults
Print and/or summarize a PKNCAconc or PKNCAdose object.print.PKNCAconc print.PKNCAdose summary.PKNCAconc summary.PKNCAdose
Print a PKNCAdata objectprint.PKNCAdata
Print the summary of a provenance objectprint.provenance
Print the results summaryprint.summary_PKNCAresults
During the summarization of PKNCAresults, do the rounding of values based on the instructions given.roundingSummarize
Round a value to a defined number of digits printing out trailing zeros, if applicable.roundString
Add an attribute to an object where the attribute is added as a name to the names of the object.setAttributeColumn
Set the duration of dosing or measurementsetDuration setDuration.PKNCAconc setDuration.PKNCAdose
Set the exclude parameter on an objectsetExcludeColumn
Set the dosing routesetRoute setRoute.PKNCAdose
Round a value to a defined number of significant digits printing out trailing zeros, if applicable.signifString signifString.data.frame signifString.default
Sort the interval columns by dependencies.sort.interval.cols
Calculate the weight for sparse AUC calculation with the linear-trapezoidal rulesparse_auc_weight_linear
Calculate the mean concentration at all time points for use in sparse NCA calculationssparse_mean
Set or get a sparse_pk object attributesparse_pk_attribute
Extract the mean concentration-time profile as a data.framesparse_to_dense_pk
Summarize a PKNCAdata object showing important details about the concentration, dosing, and interval information.summary.PKNCAdata
Summarize PKNCA resultssummary.PKNCAresults
Compute noncompartmental superposition for repeated dosingsuperposition superposition.numeric superposition.PKNCAconc
Times relative to an event (typically dosing)time_calc
A helper function to generate the formula and starting values for the parameters in monoexponential models.tss.monoexponential.generate.formula
Calculate the variance for the AUC of sparsely sampled PKvar_sparse_auc